منابع مشابه
Stacking Heterogeneous Joint Models of Chinese POS Tagging and Dependency Parsing
Previous joint models of Chinese part-of-speech (POS) tagging and dependency parsing are extended from either graphor transition-based dependency models. Our analysis shows that the two models have different error distributions. In addition, integration of graphand transition-based dependency parsers by stacked learning (stacking) has achieved significant improvements. These motivate us to stud...
متن کامل整合邊際資訊於鑑別式聲學模型訓練方法之比較研究 (A Comparative Study on Margin-Based Discriminative Training of Acoustic Models) [In Chinese]
鑑別式聲學模型訓練在近代自動語音辨識(Automatic Speech Recognition, ASR)中扮演 重要的角色。在許多基於不同思維且能有效地提昇辨識率的鑑別式聲學模型訓練方法陸 續被提出後,對於訓練方法的相關推廣與改進便如雨後春筍般地興起;而這些方法在本 質上,皆是在描述訓練語句與語音辨識器所產生對應詞圖(Word Graph)之間的關係。本 論文首先將統整與歸納近年來所發展的多種鑑別式聲學模型訓練方法,並以三種最具代 表性鑑別式訓練方法:最小化分類錯誤(Minimum Classification Error, MCE)、最大化交 互資訊(Maximum Mutual Information, MMI)、最小化音素錯誤(Minimum Phone Error, MPE)為範例,透過有系統地轉換與化解方程式,得到聲學模型訓練準則的共通表示函 數型態。我們可以發現到,對於...
متن کاملSemantic Associative Topic Models for Information Retrieval
主題模型(topic model)被廣泛地應用在各種文件建 模以及語音識別、資訊檢索和本文探勘系統中,有 效地擷取文件或字詞的語意和統計資料。大多數主 題模式,例如機率潛在語意分析(probabilistic latent semantic analysis) 和 潛 在 狄 利 克 里 分 配 (latent Dirichlet allocation),主要都透過一組潛藏的主題機 率分布來描述文件與字詞之間的關係,並用以擷取 文件的潛在語意資訊。然而,傳統的主題模型受限 於詞袋(bag-of-words)的假設,其潛藏主題僅能用來 擷取個體詞(individual word)之間的語意資訊。雖然 個體詞可傳達主題信息,但有時會缺乏本文準確的 語意知識,容易造成文件的誤判,降低檢索的品 質。為了改善主題模型的缺點,本論文提出一種新 穎的語意關聯主題模型(semantic associ...
متن کاملAn Improved Neural Segmentation Method Based on U-NET
摘要:局部麻醉技术作为现代社会最为常见的麻醉技 术,具有安全性高,副作用小等优势。通过分析超声 图像,分割图像中的神经区域,有助于提升局部麻醉 手术的成功率。卷积神经网络作为目前最为高效的图 像处理方法之一,具有准确性高,预处理少等优势。 通过卷积神经网络来对超声图像中的神经区域进行分 割,速度更快,准确性更高。目前已有的图像分割网 络结构主要有U-NET[1],SegNet[2]。U-NET网络训练 时间短,训练参数较少,但深度略有不足。SegNet 网 络层次较深,训练时间过长,但对训练样本需求较多 由于医学样本数量有限,会对模型训练产生一定影响。 本文我们将采用一种改进后的 U-NET 网络结构来对超 声图像中的神经区域进行分割,改进后的 U-NET 网络 结构加入的残差网络(residual network)[3],并对每一层 结果进行规范化(batch normalizat...
متن کامل利用聲學與文脈分析於多語語音辨識單元之產生 (Generation of Phonetic Units for Multilingual Speech Recognition Based on Acoustic and Contextual Analysis) [In Chinese]
摘要 由於全球化趨勢之盛行,多語語音常出現於會議紀錄及一般對話等方面。對於會議紀錄及對話系統而 言,多語語音自動辨識日顯重要。在多語語音自動辨識中,辨識單元集之定義及選取,將影響辨識之效率 及效能。本論文針對中英文利用 IPA 定義之多語語音辨識單元集,考慮前後文相關之三連音模型,並進一 步透過對聲學相似度與前後文脈分析,決定一組精簡有效的多語辨識單元。在相似度矩陣分析中,首先我 們利用事後機率統計,建立聲學相似度矩陣,然後,基於發音共聲現象的考量,分析語音發音上之相似度。 本論文更引入語言超空間相似度之觀念,計算三連音辨識單元前後文脈之關係,建立語言超空間相似度矩 陣。最後利用資料融合技術,合併聲學相似度矩陣和語言超空間相似度矩陣,以計算三連音辨識單元間之 距離,而後利用向量量化群集方法合併相似性高之三連音辨識單元,建立一個有效的多語語音辨識單元 集。本論文以 EAT 中英雙語語料...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 地矿测绘
سال: 2018
ISSN: 2630-4732
DOI: 10.32629/gmsm.v1i4.49